Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 237
1.
Molecules ; 29(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38611749

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1ß, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-ß1 and p-ERK in a concentration-dependent manner, as well as TGF-ß1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.


Caffeic Acids , Lactates , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Transforming Growth Factor beta1 , Tumor Microenvironment , Tumor-Associated Macrophages
3.
Circ Cardiovasc Imaging ; 17(4): e016155, 2024 Apr.
Article En | MEDLINE | ID: mdl-38626098

BACKGROUND: Computed tomography (CT) fractional flow reserve (FFR)-derived functional SYNTAX score (FSSCT-FFR) is a valuable method for guiding treatment strategy in patients with multivessel coronary artery disease. Dynamic CT myocardial perfusion imaging (CT-MPI) demonstrates higher diagnostic accuracy than CT-FFR in identifying hemodynamically significant coronary artery disease. We aimed to evaluate the feasibility of CT-MPI-derived FSS (FSSCT-MPI) with reference to invasive FSS. METHODS: In this retrospective study, patients with multivessel coronary artery disease who underwent dynamic CT-MPI+ coronary CT angiography and invasive coronary angiography or FFR within 4 weeks were consecutively included. Invasive (FSSinvasive) and noninvasive FSS (FSSCT-MPI and FSSCT-FFR) were calculated by an online calculator, which assigned points to lesions with hemodynamic significance (defined as FFRinvasive ≤0.80, invasive coronary angiography diameter stenosis ≥90%, CT-FFR ≤0.80, and myocardial ischemia on CT-MPI). Weighted κ value and net reclassification index were calculated to determine the consistency and incremental discriminatory power of FSSCT-MPI. Receiver operating characteristic curve analysis was used for the comparison of FSSCT-MPI and FSSCT-FFR in detecting intermediate- to high-risk patients. RESULTS: A total of 119 patients (96 men; 64.6±10.6 years) with 305 obstructive lesions were included. The average FSSCT-MPI, FSSCT-FFR, and FSSinvasive were 15.58±13.03, 16.18±13.30, and 13.11±12.22, respectively. The agreement on risk classification based on the FSSCT-MPI tertiles was good (weighted κ, 0.808). With reference to FSSinvasive, FSSCT-MPI correctly reclassified 27 (22.7%) patients from the intermediate- to high SYNTAX score group to the low-score group (net reclassification index, 0.30; P<0.001). In patients with severe calcification, FSSCT-MPI had better diagnostic value than FSSCT-FFR in detecting intermediate- to high-risk patients when compared with FSSinvasive (area under the curve, 0.976 versus 0.884; P<0.001). CONCLUSIONS: Noninvasive FSS derived from CT-MPI is feasible and has strong concordance with FSSinvasive. It allows accurate categorization of FSS in patients with multivessel coronary artery disease, in particular with severe calcification.


Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Male , Humans , Coronary Artery Disease/diagnostic imaging , Myocardial Perfusion Imaging/methods , Retrospective Studies , Feasibility Studies , Tomography, X-Ray Computed/methods , Coronary Angiography/methods , Computed Tomography Angiography/methods , Predictive Value of Tests
4.
Sci Adv ; 10(16): eadi1782, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38630819

Mutant isocitrate dehydrogenases (IDHs) produce R-2-hydroxyglutarate (R-2HG), which inhibits the growth of most acute myeloid leukemia (AML) cells. Here, we showed that necroptosis, a form of programmed cell death, contributed to the antileukemia activity of R-2HG. Mechanistically, R-2HG competitively inhibited the activity of lysine demethylase 2B (KDM2B), an α-ketoglutarate-dependent dioxygenase. KDM2B inhibition increased histone 3 lysine 4 trimethylation levels and promoted the expression of receptor-interacting protein kinase 1 (RIPK1), which consequently caused necroptosis in AML cells. The expression of RIPK3 was silenced because of DNA methylation in IDH-mutant (mIDH) AML cells, resulting in R-2HG resistance. Decitabine up-regulated RIPK3 expression and repaired endogenous R-2HG-induced necroptosis pathway in mIDH AML cells. Together, R-2HG induced RIPK1-dependent necroptosis via KDM2B inhibition in AML cells. The loss of RIPK3 protected mIDH AML cells from necroptosis. Restoring RIPK3 expression to exert R-2HG's intrinsic antileukemia effect will be a potential therapeutic strategy in patients with AML.


Glutarates , Leukemia, Myeloid, Acute , Lysine , Humans , Necroptosis , Leukemia, Myeloid, Acute/drug therapy , Apoptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 275-281, 2024 Mar 15.
Article Zh | MEDLINE | ID: mdl-38557380

OBJECTIVES: To investigate the nutritional status of children with cystic fibrosis (CF) and understand the correlation between malnutrition and clinical characteristics as well as lung function. METHODS: A retrospective analysis was performed on clinical data of CF children admitted from January 2016 to June 2023. Clinical characteristics of CF children with different nutritional statuses were compared, and the correlation between malnutrition and lung function was analyzed. RESULTS: A total of 52 CF children were included, comprising 25 boys (48%) and 27 girls (52%), aged between 7 months and 17 years. Respiratory symptoms were the predominant clinical manifestations (96%, 50/52). The prevalence of malnutrition was 65% (34/52), with moderate/severe malnutrition being the most common (65%, 22/34). The malnutrition group had a longer duration of illness, higher proportion of digestive system symptoms, and lower levels of serum albumin (P<0.05). Pulmonary function parameters, including forced expiratory volume in one second as a percentage of the predicted value, ratio of forced expiratory volume in one second to forced vital capacity, forced expiratory flow at 25% of forced vital capacity exhaled, forced expiratory flow at 50% of forced vital capacity exhaled, forced expiratory flow at 75% of forced vital capacity exhaled, and maximum mid-expiratory flow as a percentage of the predicted value, were lower in the malnutrition group compared to the normal nutrition group (P<0.05). Correlation analysis showed body mass index Z-score was positively correlated with the above six pulmonary function parameters (P<0.05). CONCLUSIONS: The prevalence of malnutrition is high in CF children and is associated with decreased lung function. CF children with higher body mass index have better lung function. Therefore, screening and evaluation of nutritional status as well as appropriate nutritional intervention should be emphasized in CF children.


Cystic Fibrosis , Malnutrition , Child , Male , Female , Humans , Infant , Nutritional Status , Retrospective Studies , Cystic Fibrosis/complications , Lung , Forced Expiratory Volume , Malnutrition/etiology , Malnutrition/complications
6.
BMC Ophthalmol ; 24(1): 203, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38684941

BACKGROUND: This study aims to investigate the morphologic features of the crystalline lens in Primary Angle Closure Disease (PACD) patients with zonular instability during cataract surgery using the swept-source CASIA 2 Anterior Segment-Optical Coherence Tomography (AS-OCT) system. METHODS: A total of 398 eyes (125 PACD eyes with zonular instability, 133 PACD eyes with zonular stability, and 140 cataract patient controls) of 398 patients who underwent cataract surgery combined or not glaucoma surgery between January 2021 and January 2023 were enrolled. The crystalline lens parameters were measured by CASIA2 AS-OCT. Then, logistic regression was performed to evaluate the risk factors associated with zonular instability. RESULTS: The results revealed that PACD eyes had a more anterior lens equator position, a steeper anterior curvature of lens, shorter Axial Length (AL), shallower Anterior Chamber Distance (ACD), higher Lens Vault (LV) and thicker Lens Thickness (LT), when compared to eyes in the cataract control group. Furthermore, PACD eyes in the zonular instability group had steeper front R, front Rs and Front Rf, flatter back Rf, thicker lens anterior part thickness, higher lens anterior-to-posterior part thickness ratios, shallower ACD, and greater LV, when compared to PACD eyes with zonular stability. The logistic regression analysis, which was adjusted for age and gender, revealed that zonular instability was positively correlated with anterior part thickness, lens anterior-to-posterior part thickness ratio, and LV, but was negatively correlated with lens anterior radius and ACD. CONCLUSION: Steeper anterior curvature, increased lens anterior part thickness, higher anterior-to-posterior part thickness ratio, shallower ACD, and greater LV are the anatomic features of PACD eyes associated with zonular instability.


Anterior Eye Segment , Glaucoma, Angle-Closure , Lens, Crystalline , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Glaucoma, Angle-Closure/physiopathology , Glaucoma, Angle-Closure/diagnosis , Female , Male , Aged , Middle Aged , Anterior Eye Segment/diagnostic imaging , Anterior Eye Segment/pathology , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/pathology , Retrospective Studies , Intraocular Pressure/physiology , Visual Acuity/physiology
7.
J Nutr Biochem ; 129: 109627, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38555074

Obesity is strongly associated with disturbances of vitamin D (VD) metabolites in the animal models. However, the related epidemiological evidence is still controversial, especially the different degrees of obesity children. Hence, in this present representative case-control study, 106 obesity school-age children aged 7-12 years were included and divided into different subgroups as degree I (the age- and sex-specific BMI≥95th percentile, n=45), II (BMI ≥120% percentile, n=34) and III (BMI ≥140% percentile, n=27) obesity groups across the ranges of body mass index (BMI). While the age- and sex-matched subjects without obesity were as the control group. Notably, it was significantly different of body composition, anthropological and clinical characteristics among the above four subgroups with the dose-response relationships (P<.05). Moreover, comparing with the control group, the serum VD concentrations were higher, VD metabolites like 25(OH)D, 25(OH)D3 and 1,25(OH)2D, and related hydroxylases as CYP27A1, CYP2R1 and CYP27B1 were lower in the degree I, II, and III obesity subgroups (P<.05), which were more disorder with the anthropological and clinical characteristics as the obesity was worsen in a BMI-independent manner (P<.05). However, there was a significant increase of CYP27B1 in the degree III obesity group than those in the degree I and II obesity subgroups. Furthermore, the methylation patterns on the genome-wide (Methylation/Hydroxymethylation) and VD metabolism genes (CYP27A1, CYP2R1 and CYP27B1) were negatively correlated with the worse obesity and their related expressions (P<.05). In summary, these results indicated that obesity could affect the homeostasis of VD metabolism related genes such as CYP27A1, CYP2R1, CYP27B1 and etc through abnormal DNA methylation, resulting in the disorders of VD related metabolites to decrease VD bio-availability with the BMI-independent manner. In turn, the lower levels of VD metabolites would affect the liver function to exacerbate the progression of obesity, as the Degree II and III obesity subgroups.

8.
Skelet Muscle ; 14(1): 5, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454511

BACKGROUND: Neurovascular cells have wide-ranging implications on skeletal muscle biology regulating myogenesis, maturation, and regeneration. Although several in vitro studies have investigated how motor neurons and endothelial cells interact with skeletal myocytes independently, there is limited knowledge about the combined effect of neural and vascular cells on muscle maturation and development. METHODS: Here, we report a triculture system comprising human-induced pluripotent stem cell (iPSC)-derived skeletal myocytes, human iPSC-derived motor neurons, and primary human endothelial cells maintained under controlled media conditions. Briefly, iPSCs were differentiated to generate skeletal muscle progenitor cells (SMPCs). These SMPCs were seeded at a density of 5 × 104 cells/well in 12-well plates and allowed to differentiate for 7 days before adding iPSC-derived motor neurons at a concentration of 0.5 × 104 cells/well. The neuromuscular coculture was maintained for another 7 days in coculture media before addition of primary human umbilical vein endothelial cells (HUVEC) also at 0.5 × 104 cells/well. The triculture was maintained for another 7 days in triculture media comprising equal portions of muscle differentiation media, coculture media, and vascular media. Extensive morphological, genetic, and molecular characterization was performed to understand the combined and individual effects of neural and vascular cells on skeletal muscle maturation. RESULTS: We observed that motor neurons independently promoted myofiber fusion, upregulated neuromuscular junction genes, and maintained a molecular niche supportive of muscle maturation. Endothelial cells independently did not support myofiber fusion and downregulated expression of LRP4 but did promote expression of type II specific myosin isoforms. However, neurovascular cells in combination exhibited additive increases in myofiber fusion and length, enhanced production of Agrin, along with upregulation of several key genes like MUSK, RAPSYN, DOK-7, and SLC2A4. Interestingly, more divergent effects were observed in expression of genes like MYH8, MYH1, MYH2, MYH4, and LRP4 and secretion of key molecular factors like amphiregulin and IGFBP-4. CONCLUSIONS: Neurovascular cells when cultured in combination with skeletal myocytes promoted myocyte fusion with concomitant increase in expression of various neuromuscular genes. This triculture system may be used to gain a deeper understanding of the effects of the neurovascular niche on skeletal muscle biology and pathophysiology.


Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells , Cells, Cultured , Muscle Fibers, Skeletal/metabolism , Motor Neurons , Cell Differentiation/physiology
9.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38513662

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Adenosine Triphosphatases , P-type ATPases , Animals , Mice , Humans , Adenosine Triphosphatases/metabolism , Membrane Transport Proteins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Biological Transport , P-type ATPases/metabolism , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases
10.
Food Chem ; 445: 138699, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38359566

This study investigated the effectiveness of cold-plasma treatment using air and argon as input gas on deactivation of lipolytic enzymes in lightly-milled-rice (LMR). The results showed no significant inactivation in lipase and lipoxygenase using air-plasma. However, using argon as input gas, the residual activities of lipase and lipoxygenase were reduced to 64.51 % and 29.15 % of initial levels, respectively. Argon plasma treatment resulted in more substantial augmentation in peak and breakdown viscosities of LMR starch, suggesting an enhancement in palatability of cooked LMR with increased stickiness and decreased hardness. In contrast to the decrease in volatile compounds in LMR following argon plasma treatment, the concentrations of several prevalent aroma compounds, including 1-hexanol, 1-hexanal, and 2-pentylfuran, exhibited significant increments, reaching 1489.70 ng/g, 3312.10 ng/g, and 58.80 ng/g, respectively. These findings suggest the potential for enhancing various facets of the commercial qualities of LMR by utilizing different input gases during plasma treatment.


Oryza , Plasma Gases , Oryza/chemistry , Argon , Lipase/metabolism , Lipoxygenases/metabolism
11.
EBioMedicine ; 101: 105038, 2024 Mar.
Article En | MEDLINE | ID: mdl-38417377

BACKGROUND: Carpal tunnel syndrome (CTS) is a common disorder caused by compression of the median nerve in the wrist, resulting in pain and numbness throughout the hand and forearm. While multiple behavioural and physiological factors influence CTS risk, a growing body of evidence supports a strong genetic contribution. Recent genome-wide association study (GWAS) efforts have reported 53 independent signals associated with CTS. While GWAS can identify genetic loci conferring risk, it does not determine which cell types drive the genetic aetiology of the trait, which variants are "causal" at a given signal, and which effector genes correspond to these non-coding variants. These obstacles limit interpretation of potential disease mechanisms. METHODS: We analysed CTS GWAS findings in the context of chromatin conformation between gene promoters and accessible chromatin regions across cellular models of bone, skeletal muscle, adipocytes and neurons. We identified proxy variants in high LD with the lead CTS sentinel SNPs residing in promoter connected open chromatin in the skeletal muscle and bone contexts. FINDINGS: We detected significant enrichment for heritability in skeletal muscle myotubes, as well as a weaker correlation in human mesenchymal stem cell-derived osteoblasts. In myotubes, our approach implicated 117 genes contacting 60 proxy variants corresponding to 20 of the 53 GWAS signals. In the osteoblast context we implicated 30 genes contacting 24 proxy variants coinciding with 12 signals, of which 19 genes shared. We subsequently prioritized BZW2 as a candidate effector gene in CTS and implicated it as novel gene that perturbs myocyte differentiation in vitro. INTERPRETATION: Taken together our results suggest that the CTS genetic component influences the size, integrity, and organization of multiple tissues surrounding the carpal tunnel, in particular muscle and bone, to predispose the nerve to being compressed in this disease setting. FUNDING: This work was supported by NIH Grant UM1 DK126194 (SFAG and WY), R01AG072705 (SFAG & KDH) and the Center for Spatial and Functional Genomics at CHOP (SFAG & ADW). SFAG is supported by the Daniel B. Burke Endowed Chair for Diabetes Research. WY is supported by the Perelman School of Medicine of the University of Pennsylvania.


Carpal Tunnel Syndrome , Humans , Carpal Tunnel Syndrome/genetics , Genome-Wide Association Study , Muscle, Skeletal , Chromosome Mapping , Chromatin/genetics , DNA-Binding Proteins/genetics
12.
Cell Syst ; 15(2): 109-133.e10, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38335955

Pluripotency can be induced in somatic cells by the expression of OCT4, KLF4, SOX2, and MYC. Usually only a rare subset of cells reprogram, and the molecular characteristics of this subset remain unknown. We apply retrospective clone tracing to identify and characterize the rare human fibroblasts primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis increased the reprogramming efficiency. We provide evidence for a unified model in which cells can move into and out of the primed state over time, explaining how reprogramming appears deterministic at short timescales and stochastic at long timescales. Furthermore, inhibiting the activity of LSD1 enlarged the pool of cells that were primed for reprogramming. Thus, even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.


Cellular Reprogramming , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Retrospective Studies , Fibroblasts
13.
Microbiol Spectr ; 12(2): e0100623, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38189294

In China, 45% of adolescents with obesity develop fatty liver disease, a condition that increases the long-term risk of developing cirrhosis and liver cancer. Although the factors triggering nonalcoholic fatty liver disease (NAFLD) vary in children, the composition of intestinal microflora has been found to play an increasingly important role. However, evidence is limited on the prevalence of nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH) in Chinese children. Therefore, this study aimed to evaluate the fecal microbiome of Chinese children with NAFLD and further analyze the potential of flora in regulating NAFLD-related symptoms and metabolic functions. Specifically, the study applied a 16S rRNA and metagenomic sequencing to the fecal samples of pediatric patients with NAFLD, NASH, and NAFL, as well as healthy controls, to explore the correlation among NAFLD-related indexes, metabolic pathways, and gut flora. The findings showed that some fecal microbiota had a negative correlation with body mass index, and various NAFLD-related bacteria, including Lachnoclostridium, Escherichia-Shigella, and Faecalibacterium prausnitzii, were detected. Consequently, the study concluded that the variation in gut microbiota might be more important in improving NAFLD/NASH compared with single species, providing a microbiota diagnostic profile of NAFLD/NASH.IMPORTANCEThis study aims to characterize the gut microbiota in Chinese children with nonalcoholic fatty liver disease (NAFLD) through 16S rRNA and metagenomic sequencing. The results highlight the association between fecal microbiota and NAFLD in Chinese children, demonstrating distinct characteristics compared to adults and children from other countries. Based on the sequencing data from our cohort's fecal samples, we propose a microbiota model with a high area under the curve for distinguishing between NAFLD and healthy individuals. Furthermore, our follow-up study reveals that changes in the relative abundance of microbial biomarkers in this model are consistent with variations in patients' body mass index. These findings suggest the potential utility of the microbiota model and microbial biomarkers for diagnosing and treating NAFLD in children.


Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Adult , Adolescent , Humans , Child , RNA, Ribosomal, 16S , Follow-Up Studies , Biomarkers/metabolism , Liver/metabolism
14.
Foods ; 13(2)2024 Jan 11.
Article En | MEDLINE | ID: mdl-38254541

Enzyme inactivation is crucial for enhancing the shelf life of lightly milled rice (LMR), yet the impact of diverse superheated steam (SS) treatment conditions on lipolytic enzyme efficiency, physicochemical properties, and volatile profiles of LMR remains unclear. This study investigated varying SS conditions, employing temperatures of 120 °C, 140 °C, and 160 °C and exposure times of 2, 4, 6, and 8 min. The research aimed to discern the influence of these conditions on enzyme activities, physicochemical characteristics, and quality attributes of LMR. Results indicated a significant rise in the inactivation rate with increased treatment temperature or duration, achieving a notable 70% reduction in enzyme activities at 120 °C for 6 min. Prolonged exposure to higher temperatures also induced pronounced fissures on LMR surfaces. Furthermore, intensive SS treatment led to a noteworthy 5.52% reduction in the relative crystallinity of LMR starch. GC/MS analysis revealed a consequential decrease, ranging from 44.7% to 65.7%, in undesirable odor ketones post-SS treatment. These findings underscore the potential of SS treatment in enhancing the commercial attributes of LMR.

15.
bioRxiv ; 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38260470

Exchange protein directly activated by cAMP (EPAC1) mediates the intracellular functions of a critical stress-response second messenger, cAMP. Herein, we report that EPAC1 is a cellular substrate of protein SUMOylation, a prevalent stress-response posttranslational modification. Site-specific mapping of SUMOylation by mass spectrometer leads to identifying K561 as a primary SUMOylation site in EPAC1. Sequence and site-directed mutagenesis analyses reveal a functional SUMO-interacting motif required for cellular SUMOylation of EPAC1. SUMO modification of EPAC1 mediates its heat shock-induced Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.

16.
medRxiv ; 2024 Feb 05.
Article En | MEDLINE | ID: mdl-37693606

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

18.
Genes (Basel) ; 14(12)2023 Nov 23.
Article En | MEDLINE | ID: mdl-38136937

Endogenous reference genes play a crucial role in the qualitative and quantitative PCR detection of genetically modified crops. Currently, there are no systematic studies on the banana endogenous reference gene. In this study, the MaSPS1 gene was identified as a candidate gene through bioinformatics analysis. The conservation of this gene in different genotypes of banana was tested using PCR, and its specificity in various crops and fruits was also examined. Southern blot analysis showed that there is only one copy of MaSPS1 in banana. The limit of detection (LOD) test showed that the LOD of the conventional PCR method is approximately 20 copies. The real-time fluorescence quantitative PCR (qPCR) method also exhibited high specificity, with a LOD of approximately 10 copies. The standard curve of the qPCR method met the quantitative requirements, with a limit of quantification (LOQ) of 1.14 × 10-2 ng-about 20 copies. Also, the qPCR method demonstrated good repeatability and stability. Hence, the above results indicate that the detection method established in this study has strong specificity, a low detection limit, and good stability. It provides a reliable qualitative and quantitative detection system for banana.


Musa , Musa/genetics , Plants, Genetically Modified/genetics , Crops, Agricultural/genetics , Real-Time Polymerase Chain Reaction/methods
19.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article En | MEDLINE | ID: mdl-38139381

Melon (Cucumis melo L.) represents an agriculturally significant horticultural crop that is widely grown for its flavorful fruits. Downy mildew (DM), a pervasive foliar disease, poses a significant threat to global melon production. Although several quantitative trait loci related to DM resistance have been identified, the comprehensive genetic underpinnings of this resistance remain largely uncharted. In this study, we utilized integrative transcriptomics and metabolomics approaches to identify potential resistance-associated genes and delineate the strategies involved in the defense against DM in two melon cultivars: the resistant 'PI442177' ('K10-1') and the susceptible 'Huangdanzi' ('K10-9'), post-P. cubensis infection. Even in the absence of the pathogen, there were distinctive differentially expressed genes (DEGs) between 'K10-1' and 'K10-9'. When P. cubensis was infected, certain genes, including flavin-containing monooxygenase (FMO), receptor-like protein kinase FERONIA (FER), and the HD-ZIP transcription factor member, AtHB7, displayed pronounced expression differences between the cultivars. Notably, our data suggest that following P. cubensis infection, both cultivars suppressed flavonoid biosynthesis via the down-regulation of associated genes whilst concurrently promoting lignin production. The complex interplay of transcriptomic and metabolic responses elucidated by this study provides foundational insights into melon's defense mechanisms against DM. The robust resilience of 'K10-1' to DM is attributed to the synergistic interaction of its inherent transcriptomic and metabolic reactions.


Cucurbitaceae , Oomycetes , Peronospora , Cucurbitaceae/genetics , Oomycetes/genetics , Gene Expression Profiling , Defense Mechanisms , Plant Diseases/genetics
20.
Hortic Res ; 10(10): uhad189, 2023 Oct.
Article En | MEDLINE | ID: mdl-37915500

Melon is an important horticultural crop with extensive diversity in many horticultural groups. To explore its genomic diversity, it is necessary to assemble more high-quality complete genomes from different melon accessions. Meanwhile, a large number of QTLs have been mapped in several studies. Integration of the published QTLs onto a complete genome can provide more accurate information for candidate gene cloning. To address these problems, a telomere-to-telomere (T2T) genome of the elite melon landrace Kuizilikjiz (Cucumis melo L. var. inodorus) was de novo assembled and all the published QTLs were projected onto it in this study. The results showed that a high-quality Kuizilikjiz genome with the size of 379.2 Mb and N50 of 31.7 Mb was de novo assembled using the combination of short reads, PacBio high-fidelity long reads, Hi-C data, and a high-density genetic map. Each chromosome contained the centromere and telomeres at both ends. A large number of structural variations were observed between Kuizilikjiz and the other published genomes. A total of 1294 QTLs published in 67 studies were collected and projected onto the T2T genome. Several clustered, co-localized, and overlapped QTLs were determined. Furthermore, 20 stable meta-QTLs were identified, which significantly reduced the mapping intervals of the initial QTLs and greatly facilitated identification of the candidate genes. Collectively, the T2T genome assembly together with the numerous projected QTLs will not only broaden the high-quality genome resources but also provide valuable and abundant QTL information for cloning the genes controlling important traits in melon.

...